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Abstract-In two-dimensional waw propagation and structural calculations. adjustments art: made
at t:ach time stt:p to account for the rotation of the matt:rial. These adjustments rotate the stress
tensor; rotate micro features. such as cracks. with the material; and provide an average rotation
angle for the material. Here tht: nature of the rotation pro!llem and the inaccuracies inherent in the
standard Jaum;lnn method for cases of large shear are outlined. A direct method for o!ltaining the
rotation II of the cell material is described !lased on the works of Dienes (.~ct" Malr. 32. 217 23~

(1'179) and of MMsden and Hughes (.\/atlrc",atim{ Fotmd"tiofl.f 01' £(c1.'Iicity. Prentice·llall.
Englewood Clilfs. New Jersey (19l(3»). Techniques are formulated for rezoning the ljuantities used
III the rotatil'n transfllrmation: one is an exact method hased on the invariants of the II matri.x;
others arc approximations hased I'n the compllllents of the lJ ;ll1d F matrices. To further explon: tlie
nature Ill' the Dienes metliod. an exact metlwd is devell'ped for the rotation of lines or pl;lI1es or
micnl features in the m;lterial. The Dienes rotatillll techni'lues CllIlsidered here arc necess;lry under
comlltions of large shear strain for isotropic and simple anisotropic elastic materials in whicli all
the material is ;lssumcd to nltate together. For mall'rials in whid, yielding occurs. the stresses arc
correl·tl)' provided hy the standard Jallmann method. altlulIlgh the rotation angle is not correct for
large rotations. For multiple· plane models in which specilic planes in tlie material an: lililowed.
neither the Jaumann nor the Dienes rotation treatments arc appropriate.

I. INTRODUCTION

Rotation adjustments that arc made at eal:h time inl:rement in two-dimensional wave
propagation ami structurall:akulations should al:count for three effects.

(I) The stress tensor is transformed to account for the material rotation.
(2) Micro features. SUdl as cracks. are rotated with the material.
(3) To aid in understanding the results of eakulations. the average rotation of the cell

material is computed.

Treatments for these rotation topil:s arc reviewed in the present study. Because the con­
ditions that cause large rotations also require a rezoning treatment in the cakulations.
means were examined for combining a precise rotation proeedure with rezoning. Then a
study was made to determine which types of material models and which kinds of problems
require rotation adjustments.

In the 1.lst two decades it has been generally recognized that material rotation must be
al:l:ounted for in stress--strain l:akulations. or the l:omputed stress tensor will depend on its
coordinate system. At present. rotations are commonly accounted for by using the Jaumann
rotation rate computed from the coordinate motions of the computational cell

( I )

where .1:x is the increment of rotation in radians. and II and l' are coordinate velocities in
the x- and y-directions. In wave prop'lgation codes such as HEMP by Wilkins (1964). these
rotation corrections are made by transforming the stress tensor in each cell through the
angle -.1:x so that the tensor remains in the fixed external coordinate system as the material
rotates. This Jaumann rotation correction has recently been found to be appropriate only
for small shear strains (see. e.g. Dienes (1979».
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To indit.:ate the nature of the approximation involved in eqn (I). consider a hlod
suhj\.'l:ted to simple shear. as shown in Fig. I(a). The hlot.:k is sheared hy moving points 2
<lnd 3 hy 11/\1. I-'rolll t.:qn (I). tht.: rotation is

uAf
Ax = 2Ay

The diagonals of the square rotate hy this amount. Yet line 03 rotates hy (uAI):'(L~y) = 2Ax,
and line 01 docs not rotate. Hem;e. the combination of shear with rotation appears to
product.: a complex state in whit.:h dilrert.:nt dements rotate dilli.:rcntly. Thus A:t from eqn
(2) is only an "a verage" rotation for the material.

For an example of the dilliculty with large rotation prohlems. consider the t.:ase where
tht.: increl1lt.:ntalmotion in Fig. I(a) gives an angular t.:hange of Ax:::; I . Then continue the
motion for ISO int.:rements. Line OJ rotates hy about 2 per inen:ment initially. But as it
moves from the vertit.:al, the angular change per increment reduces. Line 02 initially rotates
hy Ax per increment; hence. the rotation of this line matches thc "averagc" rotation. But
this lint.: also moves away from 45 and so thercafter its rotations arc kss than Ax per
increment. The state after 180 of motion is shown in Fig. I(b). Equations (I) and (2)
would give a total angular change of 180 . Yet from fig. I(b). it is clear that none of the
hounding lines rotated more than 90, so the average rotation must he less than 45 . (The
actual avcragt.: rotation is about .IS .)

In the foregoing discussion the rotation could be viewed as following crystallographic
p!;tnes on which the stress acts or as simply following material lines. Thus. it is assumed
that the strt.:ss tt.:nsor follows these planes or lines. Therefore. the stn;ss rotation calculations
art.: made to follow the motion or the planes. However, as pointed oul by Druckt.:r (19R5).
when plastic slip occurs in the material. the crystallographic plan~s do not rollow the
macroscopit.: motion of the material. This amoiguity betwe~n the macroscopic motion and
the rotation or the planes is illustrated in Fig. 2. The upper part or the figure shows a large
shear !low within a crystallographic material with vertical slip lines. Here. for an average
ditrert.:ntial n)[ation of Ax. the lines rotat~ by 2Ax. and the stress tensor should rotate with
these lines. fn the lower part of the figure. the slip occurs along the horizontal lines and no
rolation occurs in the lines. From the usual macroscopic dcst.:ription of the cell and of th~
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(II Simple shear with slip along lines that
are initiallv vertical.

(bl Simple .he.r with slip along line. that
are horilontal.

Fig. 2. Allcrnate pallcrns for slip in a cryslal wilh conse411cnt cfTects olll11aterial ami strcss rotation.
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material. one cannot distinguish octween these two responses of the material to shear. It
w(luld require a detailed theory of plastic flow that includes the rotation of the individual
planes in the material (and thercl(lre the development of anisotropy) to distinguish the two
oehaviors shown in I:ig. 2. In the l(lllowing sections it is assumed that the material remains
homogeneous and isotropic throughout the flow, and Drucker's important physical question
is temporarily disregarded. lIis point will be returned to in Section 7.

This paper first presents a review of three recent analyses of the rotation problem.
Steps for conducting the analysis arc recommended and methods for rezoning the quantities
needed in the rotation procedure are discussed. The procedure for the rotation of lines and
of the stress tensor arc derived separately. Finally, through use of the procedure, the
conditions under which the procedure is important are determined.

2. BACKGROUND

Recent work has been done by Dienes (1979), Marsden and Hughes (19S3), and
Hallq uist (19S3) in determining the appropriate transformations to undertake to handle
the rotation of material undergoing large shear deformations.

Dienes (1979) has developed a three-dimensional analysis for material rotation, con­
sidering the corrections required to transform the stress tensor and determine the correct
angle. The analysis was applied to clastic material initially; however, he has noted that the
concept is appropriate for any rotation, elastic or plastic. His corrections to thc stress tensor
take the same form as the Jaumann equations

(3)

where if is the strcss rate tensor corrected for rotation. it the stress rate directly from the
constitutive equation, and n the tensor representing the angular velocity of the material

(4)

where R is the rotation tensor (defincd later). Figure 3 (from Dienes' text) shows that O"IZ

grows monotonically with shear strain when Dienes' correction is used. whereas with the
traditional Jaumann mcthod the stress oscillates for very large strains.
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The method outlined by Dienes (1979) is now considered in some detail for determin­
ing the rotation of the material of a cell from the locations and velocities of the material.
He begins with the ddormation and velocity gradient matrices. The problem is solved for
the general three-dimensional case, but attention is restricted to a two-dimensional problem.
First a lkscription of his solution is presented, then a method based on the development,
and linally the numerical procedure he recommends.

Dienes' method begins with the deformation matrix F with components

tx,
F = .....

II 1 ::
( '>,

(5)

where X, is the current coordinate and ~, the original Eulerian position. Next Dienes derives
the material rotation n from the vorticity W, left stretch matrix V, and the deformation
rate matrix D. The vorticity and deformation rate matrices arc both obtained from the
velocity gradient G

(6)

where II, is the velocity in the ith direction. As Dienes also shows, G is related to the
deformation gr,ldient as follows:
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Thl: ddormation rate matrix D is

DII = 1/2(G,,+G,,)

and thl: vorticity W is

739

(7)

(8)

(9)

Thl: vorticity is thl: rotation quantity customarily used with the Jaumann rotation com­
putation.

Thl: kft stretch matrix V is named for its position in the defining relation

F = VR

where R is the rotation tensor. To compute V, he forms the product B

R = FF'

from which he derives V by the method of Bellman (1960)

The rotation tensor R is ootained oy inverting eqn (10)

( 10)

( II )

( 12)

[

COS II
R = V IF =

sin II - sin IIJ
eos () .

( 13)

With this definition of the rotation tensor, the rotation is positive counterclockwise. From
the D and V matrices he defines two more matriees

Z = DV-VD

and

S = (Itr(V)-V]I.

His angular velocity of the material axes, OJ (= n 1 d is then given by

( 14)

( 15)

( 16)

Thus the 52 term acts as a correction to the rotation W which is customarily used in the
Jaumann rate equations.

In his paper Dienes gave the following steps for computing the rotation in a computer
code, but did not recommend this procedure.

(I) Compute the current F" and G"' 1/2 from the nodal positions and velocities.
Evaluate D H

12 and W" 1 1 from G"- 11. Here n refers to the beginning of the time step.
so quantities labeled" + 1/2 are defined at the middle of the time step.

(2) Compute V" from the square root of FF T (eqns (II) and (12».
(3) Compute R" and 0" from eqn (13).
(4) Compute SH 1,1 and Z" 1.1 from V" and D H 1 1 (eqns (14) and (15».
(5) Compute w"+1 1 from eqn (16).
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This procedure requires computation of the F matrix (hcm:e. storage of the original Eulerian
coordinate ';l. The time wnsuming steps are the computation of the square root of FF r

and the matrix inversion for determining S. The procedure is very accurate.
Dienes recommended a second procedure with the following steps.

(I) Compute G"' I , and then \\",,-1 , from G"· I , (eljns (6) and (9)).

(2) Compute Z"· I J from Y" and D,,·I , (eqn (I-t}l.
O) Calculate S" from V" (eqn (15)).
(4) Obtain "n. I , from G'" I 'Y" - ""( \V'" I '+S"Z"· I ') (Dienes' egn (7.5».
(5) Update Y"· I from Y" and \,,,.1 '.
(6) Compute the angular velocity {!} from eqn (16).

This method requires storage of Y, but not of the original Eulerian coordinates. The lengthy
calculation is the matrix inversion in step 3. This second method is also very accurate. Note
that in both of these approaches Dienes gets the rotation quantity w = /J explicitly. and in
the tirst method. II and R are also obtained.

Marsden and Hughes (198) have suggested a simplitied way to obtain the stretch
matrix from the R matri.x. Instead of computing V, they obtain the right stretch matrix U.
This matrix is ddined hy

F = Rl!.

Th~'y hcgin thc computation hy fonning the product matrix ('

C == F'F.

Then {J is given by

( 17)

( IX)

{f
(' +- ,j (del ('J)

\/(tr(' t· 2,(dct C)}

Thus their method has the following steps.

(I) Compute i"" from (;" I I , and 10''' from cqn (7). and cvaluate 10'''' I = F"+ i""l\r.
(2) Compulc (J'" I from F'" I as in cqn (19).
(3) Compute I{''' 1= 10'''' I(ll'" I) I.

Marsden and Hughes d() not expliL:itly L:ompute (I or (I) hecause Ihey arc nOI needed for the
rota tion of Ihe stn:ss Icnsor.

Hallquist ( 1\)X3) uses the method of Marsden and Hughes ( I<JX3) in his N IK E2D code.
In this tinite c!cment codc he compulcs the I~", R'" I '. and R'" I rotation tensors. With R"
hc rlllatcs thc initial strcss tcnsor ([" from thc extcrn:1! coordilwtc systcm to the material
oricnlati(Hl. The strain incrcment L\C'" I , is rotatcd to the material orientation with
I{" I I '. Then ([". I is cOlllputcd hy the material model, and thc stress tcnsor is transformcd
haL:k to the external L:oordinate system. R is not stored between L:ydes, so the thn:e-step
proL:edure above is performed three limes al each cell and each cycle.

From the foregoing it appears that then: arc proL:edures availahle to transform the
stress tensor and to follow the rotation or the cell material. However, it is not dear how
these methods can oe used under conditions in which rezoning is also being used. The
rotation procedures with rezoning arc cxamint:d in a later section.

_\ AVERt\CiE CELL ROT:UIOS IS TWO·DIMENSION.\L ('.·\LCUL:\TIONS

In this section a practical means for performing the rotation calculation is developed.
Later, in Section 7. conditions for which this proL:t:dufe is appropriate art: considert:d. The
following requirements will oe considered for judging the system to oe practical:
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~a) only the current nodal positions and velocities are required, but not a history of
these quantities;

(b) the system should minimize the computational time and the additional storage;
(cl the system must permit standard rezoning procedures to occur, that is, rezoning

should not disturb the rotation calculation, and the new variables required (if any) must
be rezonable.

The method proposed here begins with the computation of the matrices G H
I c,

F'~ 1 c. and F'· I. Then eis computed from the polar decomposition theorem. From eand
the stored value of 00 the increment 6.e is computed. The rezoning aspect of this calculation
is treated in the next section. Here the definition of the deformation matrix F. the com­
putation of O. and tests of the procedure are examined.

3.1. Dt:/iml/a/io/l lIIa/rix ca/m/a/iol/

The deformation matrix defined in eqn (5) must be determined in a way that is natural
for the finite-difference codes. To begin, the current coordinates X, are written as functions
of the initial coordinates (~ and 'Il and time

(20)

and this function is computed by litting it to the nodes around a cdl at some time. A single
function F is required that represents the cdl material. yet the function must oe litted to
the K nodes around the cd!. For this litting purpose one could define the fundion X'k' the
X, value at the k th node. 0)' the series

X,k = AIII+AII~+AI~,I+AI\~,I+AI4~~+AI~"~+ ... (21 )

where .'/"" arc wnstants ohtained hy the titting process. By dilrerentiating eqn (21) for X,
with respect to ~ or 'I. the deformation gradient I':, is obtained according to eqn (5). For a
four-node cell. these components of Fare

An+A I

(22)

when: x,,,, = x... -x" ~ ..., = ~",-~,. and 111 and n refer to node numbers. The An and AI
factors arc the areas of the cdl at the beginning and end of the increment. Clearly. in this
method the original coordinall:s ~nr and 'I", must be retained for all cells. Yet these original
coordinates arc not rezonable quantities. so this method of computing F cannot be used
with rezoning.

An alternate method for determining F is to start with an initial value, and update it
at eadl time step in the calculation using j: computed from eqn (7)

(23)

where 1/ indicates that these matrices arc from the nth time step. The F factor is not exactly
centered in this calculation. The F at the next time step is calculated using F
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(24)

This second method. using F. seems the most direct. but requires storage of f from the
previous cycll:. This method of computing F is chosen for the prm:edure.

3.2. Computation o/lhe rotation angle 0
For computing the rotation angle 0 the left and right stretch matrices V and U. and

the rotation tensor R are considered. Because of the symmetry of V and U. and because R
represents a counterclockwise rotation of O. one can recognize that one can write these
matrices in the following way:

R = [COSO
sin 0

-SinO]
cos () .

(25)

Equations (10) and (17) can be written out term by term and solved for the unknown
components V. LJ. and R

F
"

= J'"cosO+V,~sinO= U"cosO-CJ:sinO

r" = J'llsinO+J'I:cosO= (""cosO C::sinO

F: 1 = J'1~cosf}+V1~sinO= U 1 Jsin(/+Ut:cosf}

f':: = -·V,:sin(/+V1;cosO= C,;sin(}+C;:cosO.

The solution of either set of four simultaneous equations leads to

F" --[;J'
tan () =' .

F,I+F;;

(26)

(27)

The angle () can I'le ohtained with the arctangent function or. for small angks. with the
series expansion for arctan /I.

To find the rotation rate (I). the current orientation 0 of the material is first computed
from tan () (eqn (27». Then

(18)

where Oil is the orientation at the previous cycle.

3.3. COil/PUll/lion oj" V. U, ([lid R
por the rezoning procedures considered later it may be necessary to obtain the Vand

U matrices. and the R tensor. If these arc of interest. one can proceed as follows. The sine
and cosine factors in R can be computed from components of the deformation matrix.
using egns (26)

. F:1-FJ ;
sinO == ...

J«F~I - F I ~)~ +(F11 + Fd~)

F,,+F;:cos 0 = .
,'/«F11 -Fd 1 +(FIi +Fd~)'

(29a)

(19b)

With the sine and cosine available, one can simply solve for the V components from egns
(26)
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VII = F'lcosO-FI~sinO

VI~ = FI,sinO+FI~cosO

= F~I cosO-Fcc sinO

V~~ = F: IsinO+F~~cosV.

The U components are

L'II = F II cosO+F~1 sinO

(/1: = -FII sinV+F~1 cosO

= FI~ cosO+ F~: sin 0

U:~ = -FI:sinO+F::cosO.

743

(30)

(31 )

An alternate procedure to the above would involve using Hughes' method of finding U by
taking the square root of FTF: the results are identical.

3.4. Summary of thl! ml!thod
In summary. the strategy suggested for two-dimensional problems differs slightly from

those of Dienes and Hughes. One is interested mainly·in obtaining the rotation angle (} and
the increment toO. In this method it is necessary to store the full F matrix and the rotation
O. During each time step one makes the following computations.

(I) Compute G (eqn (6»). and evaluate I> (eqn (S) and W (eqn (9)) from it.
(2) Using G and the stored F. compute t. (eqn (23». and evaluate the current F matrix

(eqn (24»).
(3) Compute tan 0 (eqn (27)) and evaluate 0. Adjust 0 as needed to account for the

ambiguity of the arctangent.
(4) Compute the increment of rotation from toO = 0 - 00 ,

(5) Perform the stress rotation calculations using toO in the same way that one generally
used WI:'

The stress rotation calculations have the form

a" = a ,,0 - 2a....utoO
a •.•. = (1yyU +2a",utoO
a:: = a:: u

(1, .. = a.O'o + «(1"'0 - a,...0 ) 110. (32)

This new procedure requires five storage locations p.-:r cell (four Fs and 0) in addition to
those for the usual Jaumann computations. The computation time for the procedure is
mainly taken by the additional square root (eqn (29» and the arctangent.

3.5. Tl!st.\" of the rotatio" procl!dure
A number of tests were made on the foregoing rotation procedure to evaluate its

accuracy and speed. and especially to determine whether it works correctly for very large
angles. The following problems were run.

(I) Apply a uniform tension to a body and then gradually rotate the body. computing
the current stress tensor at each step. This is a rigid body rotation so the angle and stress
tensor should be obtainable even using the Jaumann method with (I) = W: 1•

(2) Extend a block gradually while rotating it. This problem includes some rigid body
rotation. yet is a more complex test. The results should match those of test I at the end
point.

(3) Shear a block in simple shear and follow the computed orientation 0 and the stress
tenSOT.
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H) Shear a hlock during rotation and follow the orientation and stress tensor.

These tests were all performed using the foregoing procedure. [n each case 400 steps were
used and the stresses and orientation 0 were examined at several intermediate steps as well
as at the end. The rotation was through an angle of 360 " [n all cases the value of () ohtained
was within O.I'Y., of the exact value. The error was found to be directly related to the
imposed angular increment. The stress computation obtained in simple slll:ar is shown in
Fig...k and compared with the exact solution of Dienes.

4. REZONING OF TIlE ROTATION QUANTITIES

During a large distortion computation it is usually necessary to rezone the cells, that
is. to construct a new mesh with less distortion in the individual cells. After the new mesh
is constructed. the properties in the old cells are assigned to the new cells. Generally. each
new cell will contain some material from two or more of the old cells. The properties
(energy. pressure, stress tensor, yield strength, plastic strain, etc.) of the mixed materials in
the new cell arc computed by weighting each property according to the mass contributed
by the old cell. For example, property P is computed from

(33)

where 111. is the mass contributed by the kth old cell to the new cell. This mass-weighting
method is essentially an averaging technique, and thus it causes some smearing of the
properties during rezoning.

To fit into the rezoning procedure. it is essential that the variables used in the rotation
calculation be rezonable in a manner like that in egn (33). The matrices F and V (or U).
and the scalar () have been selected as candidates for rezoning. The angle 0 is scalar and
represents a physical quantity which can be appropriately averaged in combining properties
from two groups; hence the angle is rczonablc.
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The stretch matrices each represent the state ofdistortion in the cell material. Following
Dienes (1979), they can be diagonalized as follows:

U = T.\T- I (34)

where A is diagonal. and T represents an orthogonal transformation. Hence the fundamental
information contained in V or U is A II, A::. and the transformation angle :t associated
with T. where

- sin :tJ.
cos:t

(35)

These three quantities (A II. A::. and :t) meet the criteria for averageable quantities. and
therefore are rezonable. An alternate set of independent quantities are the trace and deter­
minant of U, and the angle :t. Here the determinant of U has the physical meaning of the
exponential of the areal strain, and hence, it is a quantity that one may especially want to
preserve during rezoning. The five quantities are all readily computed from the U matrix

traceU = trU = V11+V ZZ

I 2U ,z
:t = .,arctan V (I'

- 11- ::!::!

(36)

(37)

(3X)

(39)

Similar rezoning results arc obtained by using the set All' A zz, and :x or the set tr U,
dct U, and ct. Following the rezoning of these inv.triants, the new U matrix is constrw.:ted
by computing U = TAT I with the new A and T (from IX) tensors.

The foregoing is clearly a lengthy procedure so it is worthwhile to form an approximate
method. For a tirst approximation, one may choose to rezone the V'I components, yet
preserve the areal strain (det U). To start the calculation U is computed from F using either
elln (19) or (31). Then the areal strain factor A = det U is computed and a u matrix with
reduced components is generated

(40)

These reduced u matrices art: then used in the rezoning process to form a reduced matrix
for the new cell

(41 )

Next the determinant A, = det "'1' is computed and the areal strain factor from the old cells
is rezoned

(42)

Finally the U matrix for the new cell is formed
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(43 )

In this way the new If has a mass-weighted areal strain. This rezoning method was tested
for cases in which there were large rotations combined with either extension or shear. For
180 differences between rotations of the old cells. the U matrix components for the new
cell were all within I% of the exact value for the extension case and within 10% of the
exact value for the shearing case. For the usual strain and rotation levels. this procedure
should be satisfactory.

A simpler and faster rezoning approximation can be made by rezoning the F com­
ponents directly. The determinant of F also equals the exponential of the areal strain. so
one can preserve the areal strain using a procedure like that above. As with the U matrix.
one starts by calculating the reduced components of F for the new cell

(44)

The areal strain factor for the reduced F matrix is computed: A, = det F",. Then the
components of the F matrix for the new cell

F:, = F",J(ijA). (45)

Rezoning tests with the F components showed that nonsense was obtained when old cells
with rotations that dill"ered by I~o were used. Errors of approximately 10°!., in the F
components were obtained when the rotations of the old cells were within 45 . for either
extension or shearing. Hence. the usc of Fin rel.oning could only be considered satisfactory
for fairly small angular difkrences between old cells.

Based on these initial observations a two-oranch plan for rezoning was developed.
depending on the range in the rotation angks in the old cells contriouting to the new cell.

(I) Cells with angular differences less than 20': mass weight the components of the F
matrix.

(2) Cells with large angular differences: derive the U matrix and 0 for eaeh contributing
cell. Mass weight U and O. Then recover F for the new cell.

5. EFFECT OF YIELDING ON ROTATION

For material that may yield and remain isotropic. the same rotation procedures can
be used as for the elastic material. However. the continued straining tends to eliminate the
errors in the stress transformation. so the stresses are accurate whether or not they are
correctly transformed. The results of an ideal plastic calculation of simple shear with a yield
strength of 20% of the shear modulus gave the results shown in Fig. 5. The very large yield
value was used to emphasize the importance of errors in the rotation transformation.
The exact and Jaumann solutions for stress in the presence of yielding arc essentially
indistinguishable. However. the angle calculation for the yielded case by the Jaumann
method still has the inaccuracy illustrated in Fig. 3(b). Hence. if the rotation angle is not
needed. the Jaumann solution is very satisfactory for yielding in isotropic material.

0, DEVELOPMENT OF TilE ANALYSIS FOR ROTATIO~ OF L1:'<JES

The rotation analysis is developed first for the motion of a line in a linear velocity field.
This result is applied to the rotation of material features such as microcracks. Then the line
analysis is applied to determine the average rotation of a block undergoing large shear
deformation.

A line segment L in a linear velocity lield will be stretched (or shortened) and rotated.
Consider here only the rotation aspect. The rotation rate dO/dt is given by the dot product
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dO

dt

I dr)'n

ILl dt
(46)

(47)

where Ii is the unit normal to line L, J is the displacement of one end of the line with respect
to the other, and L is the line length, The linear velocity field is written in terms ofvclocities
II and I' in the x- and y-directions, Then dJ/dt can be written in terms of the x- and y­
coordinates and the <ix and <iy lengths of the line

I d;) .,(i'JII/rJX)<iX+ (c711/rJy)<iy ...,(DI,/iJx)<ix+ (i'Jv/iJy)<iy= I _ _ _- +) ..- ----.. . . _ .._-
ILl dt ILl ILl

_(iJII DII) _(iJV ('1')= i···· cos 0 + sin (J + j .... cos 0 + sin 0 ,
i1x iJy iJx Dy

The angle 0 is the angle of the line with respect to the x-coordinate. measured positively
counterclockwise. Similarly the normal Vl:ctor ii is

ii = 7sinO- ]cosO. (48)

When the expressions for dJ/dt and ii arc placed in eqn (46), the increment of rotation is
obtained

dO
dt

()II iJII iJv iJr
sinOcosO- ···sin~O+ -"cos~O+ :....·sinOcosO.

('X Dy ex Dy
(49)

Equation (49) is used to obtain the rotation for lines or other line-like features in two­
dimensional calculations.

Now consider the rotation of several lines in a block of material as a means ofobtaining
the average rotation of the material. Assume that the block has a large number of lines
drawn on it. Then the block is sheared and the motion of the lines is followed. If a simple
shear w = d:c/dt = cII/oy is applied. then the rotation rate dO/dt of a line originally at an
angle 00 from the X-axis is

S4S H:1-o;
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180

dll

dt
-(tJsin~lI=

d:x . ,
sin - II.

dt
(50)

For a constant (I), this equation can nc integrated over time to ontain

cotO = cotOu+t\:x

or

dll = II -Ou = arccot (cot lIu+ d:c) - lIu.

(51 )

(52)

Now the average rotation for a cell can be found by finding the average dO for a large
number of planes. A set of IXplanes uniformly distributed from lIu = 0 to 170 was studied.
Simple shear strain like that in Fig. I was imposed in I increments for 180 steps. As shown
in fig. 6, the rotations of the planes varied from 0' to 115',

Next imagine that a number of lines during the shearing calculation had been tracked,
and the accuracy that could be achieved with this method was determined. first the usc of
an orthogonal pair of lines is considered. The average rotations of pairs which were initially
orthogonal ranged from 36' to 80 " compared with the exact value of 57.52 = arctan rr/2.
The aeeuracy of the average rotation gradually improved as sets of 4 lines and Xlines were
considered. The average rotation for all IX planes was 57.64 . This variation in the range
of average rotation angles is illustrated in Fig. 7. Hence. the correct rotation of the material
can be found by following the rotation of lines, but this procedure docs not provide high
accuracy unless a large number of lines arc used.

7. APPLICATIONS TO CONSTITUTIVE RELATIONS

The foregoing rotation calculations arc intended for usc with constitutive relations so
that the stresses computed are objective. that is. independent of the motion of the coordinate
system. The type of constitutive relation determines the information required from the
rotation procedure. Three types of relations arc identilled helow.
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( I) Isotropic elastic material. For isotropic material. the calculation can be conducted
either by rotating the stresses to the material coordinates using the R tensor. or the stresses
I:an be incremented using till as in e4ns (32). The results in Fig. 3 show the inaccuracies
involved in the stresses and the rotation angle by neglel:ting a precise rotation procedure.

(2) ISlltropic plastic material. As noted in Section 5. for material that may yield. the
same rotation prol:edures Gtn be used as for the e1astil: material. The results of an ideal
plastil: Glkulation or simple shear showed that the exact and Jaumann solutions for stress
arc essentially indistinguishable. Ilowever. the angle calculation for the yielded case by the
Jaulllann method still has the inaccuracy illustrated in Fig. 3(b).

(J) Anisotropil' matcrial. For caleulations with anisotropic material it is necessary to
know the orientation of the material coordinates. In such a material it is onen assumed
that the material planes all rotate together. maintaining their fixed angular relationship
(under conditions of large distortion. this fixity of angles is certainly not achieved according
to the results in hg. (I). The rotation tensor R or the angles II and MJ arc required for the
cakulation.

(4) Multiple-plane models. Models such as BFRACT (Seaman ('( al. (19X5) and
SHEAR (Seaman and Dein ((l)XJ» contain a series of internal planes that follow the
material motion. The rotation of these planes is computed correctly from the velOl;ity
gradient malrix G according to the equations in Section 6. These models account for the
relative motion of several planes. and the gradual development of anisotropy. Hence. these
conslillltive relations do not require any additional rotation treatment.

x. SUMMARY

The rotation problem in two-dimensional calculations has been treated to determine
methods appropriate to finite-difference wave propagation calculations involving rezoning.
First. the nature of the rotation problem and the inaccuracies inherent in the standard
Jaumann method for cases of large shear strain were outlined. A direct method for obtaining
the rotation II of the cell material was outlined based on the works of Dienes (1979) and
Marsden and I Iughes (llJX3). The deformation matrix F is stored for each cell. The current
angle () is ohtained from

(27)

Three methods were explored for rezoning the quantities used in the calculation.
A theoretically cxact rezoning method based on the invariants of the U matrix. and
approximations based on the U and F components are outlined. To explore further the
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nature of Dienes' method. an exact method was developed for the rotation oflines or planes
in the material.

The rotation technique of Dienes is necessary under conditions of large shear strain
for isotropic and simple anisotropic elastic materials in which all the material is assumed
to rotate together. For materials in which yielding occurs the stresses are correctly provided
by the standard Jaumann method. although the rotation angle is not correct for large
distortions. For multiple plane material models in which specific planes in the material are
followed. neither the Dienes nor the Jaumann rotation treatment is appropriate.
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